Sunday, November 19, 2017

Plant Extract Against Colon Cancer?

Anti-cancer benefits of a plant extract, mediated through inhibition of Wnt signaling. This may be useful for developing preventive or therapeutic approaches to colon cancer.  Abstract:

OBJECTIVE:
To investigate the effect of the ethanol extract of Scutellaria barbata D. Don (EESB) on colorectal cancer (CRC) growth and Wnt/β-catenin signaling pathway in vivo and in vitro.
METHODS:
In vivo experiment, CRC xenograft mouse model was constructed with injection of HT-29 cells. Following xenograft implantation, twenty mice were randomly divided into EESB-treated group (n=10) and control group (n=10) by a random number table, and were given with intra-gastric administration of 2 g/kg EESB or saline, 5 days a week for 16 days, respectively. At the end of experiment, tumors were removed and weighed by electronic scales. The proliferation biomarker Ki-67 of tumor was evaluated by immunohistochemistry (IHC) assay. In vitro study, HT-29 cells were treated with 0, 0.5, 1.5, 2.5 mg/mL EESB for 24 h. At the end of the treatment, the viability and survival of HT-29 cells were determined by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and colony formation assay, respectively. The mRNA expression of c-Myc, Survivin and adenomatous polyposis coli (APC) was examined by reverse transcription-polymerase chain reaction (RT-PCR) both in tumor tissues of CRC xenograft mice and HT-29 cells. Protein expression of c-Myc, Survivin, APC, and β-catenin as well as β-catenin phosphorylation level were evaluated by IHC assay or Western blotting.
RESULTS:
EESB significantly reduced tumor weight in CRC xenografts mice, compared with the control group (P<0.05). IHC assay showed that EESB significantly inhibited protein expression of Ki-67 in tumor tissues (P<0.05). MTT assay showed that EESB significantly reduced HT-29 cell viability in a dose-dependent manner (P<0.05). Colony formation assay showed that EESB dose-dependently decreased the survival of HT-29 cells (P<0.05). In addition, RT-PCR assay showed that EESB decreased the mRNA expression of c-Myc and Survivin and increased APC expression, both in tumor tissues of CRC xenograft mice and HT-29 cells (P<0.05). IHC assay or Western blotting showed that EESB decreased protein expression of β-catenin, c-Myc and Survivin, as well as increased APC expression and β-catenin phosphorylation in tumor tissues or HT-29 cells (P<0.05).
CONCLUSIONS:
EESB significantly reduced tumor growth in CRC xenografts mice, and inhibited the viability and survival of HT-29 cells. EESB could suppress the activation of the Wnt/β-catenin pathway, which might be one of the mechanisms whereby Scutellaria barbata D. Don exerts its anticancer activity.

No comments:

Post a Comment