Infections can trigger age-related neurodegenerative diseases; experiments with worms demonstrate that a neuropeptide may mediate these effects, linking infection with nervous system diseases (a link that has already been established via the problem of autoimmunity triggered by infections with microbes that have antigens that mimic the host’s nervous system). Abstract:
Infections have been identified as possible risk factors for aging-related neurodegenerative diseases, but it remains unclear whether infection-related immune molecules have a causative role in neurodegeneration during aging. Here, we reveal an unexpected role of an epidermally expressed antimicrobial peptide, NLP-29 (neuropeptide-like protein 29), in triggering aging-associated dendrite degeneration in C. elegans. The age-dependent increase of nlp-29 expression is regulated by the epidermal tir-1/SARM-pmk-1/p38 MAPK innate immunity pathway. We further identify an orphan G protein-coupled receptor NPR-12 (neuropeptide receptor 12) acting in neurons as a receptor for NLP-29 and demonstrate that the autophagic machinery is involved cell autonomously downstream of NPR-12 to transduce degeneration signals. Finally, we show that fungal infections cause dendrite degeneration using a similar mechanism as in aging, through NLP-29, NPR-12, and autophagy. Our findings reveal an important causative role of antimicrobial peptides, their neuronal receptors, and the autophagy pathway in aging- and infection-associated dendrite degeneration.
No comments:
Post a Comment