Thursday, March 21, 2024

Resistance Training Restores Muscle Sensitivity To Feeding

An interesting paper on exercise, feeding, and muscle; abstract:

Normally, skeletal muscle mass is unchanged, beyond periods of growth, but it begins to decline in the fourth or fifth decade of life. The mass of skeletal muscle is maintained by ingestion of protein-containing meals. With feeding, muscle protein synthesis (MPS) is stimulated and a small suppression of muscle protein breakdown (MPB) occurs, such that protein balance becomes positive (MPS>MPB). As the postprandial period subsides and a transition toward fasting occurs, the balance of muscle protein turnover becomes negative again (MPB>MPS). Thus, during maintenance of skeletal muscle mass, the long-term net result is that MPS is balanced by MPB. Acutely, however, it is of interest to determine what regulates feeding-induced increases in MPS, since it appears that, in a number of scenarios (for example aging, disuse, and wasting diseases), a suppression of MPS in response to feeding is a common finding. In fact, recent findings point to the fact that loss of skeletal muscle mass with disuse and aging is due not chronic changes in MPS or MPB, but to a blunted feeding-induced rise in MPS. Resistance exercise is a potent stimulator of MPS and appears to synergistically enhance the gains stimulated by feeding. As such, resistance exercise is an important countermeasure to disuse atrophy and to age-related declines in skeletal muscle mass. What is less well understood is how the intensity and volume of the resistance exercise stimulus is sufficient to result in rises in MPS. Recent advances in this area are discussed here, with a focus on human in vivo data.

To summarize: feeding, particularly of protein, favors muscle buildup as opposed t breakdown and fasting does the opposite.  Muscle loss with age seems linked to suppressed muscle buildup from feeding and this suppression can be reduced by resistance training.  Therefore, resistance training helps to reduce/prevent age-related muscle loss, possibly through enhancing feeding-related stimulation of muscle protein synthesis.  Hence the importance of resistance training and (protein) feeding (albeit of course not in excess).

Coffee And Cancer Risk

Here is a paper on coffee consumption and cancer risk from several years ago,  Bottom like is that there doesn't seem to be a big effect either way; coffee can cause decreased risk for some cancers, but possibly increased risk for childhood leukemia with maternal coffee drinking during pregnancy. The data are "limited and inconsistent" in some cases; overall it seems like a "wash" based on these findings, no big effect. Abstract:
We reviewed available evidence on coffee drinking and the risk of all cancers and selected cancers updated to May 2016. Coffee consumption is not associated with overall cancer risk. A meta-analysis reported a pooled relative risk (RR) for an increment of 1 cup of coffee/day of 1.00 [95% confidence interval (CI): 0.99-1.01] for all cancers. Coffee drinking is associated with a reduced risk of liver cancer. A meta-analysis of cohort studies found an RR for an increment of consumption of 1 cup/day of 0.85 (95% CI: 0.81-0.90) for liver cancer and a favorable effect on liver enzymes and cirrhosis. Another meta-analysis showed an inverse relation for endometrial cancer risk, with an RR of 0.92 (95% CI: 0.88-0.96) for an increment of 1 cup/day. A possible decreased risk was found in some studies for oral/pharyngeal cancer and for advanced prostate cancer. Although data are mixed, overall, there seems to be some favorable effect of coffee drinking on colorectal cancer in case-control studies, in the absence of a consistent relation in cohort studies. For bladder cancer, the results are not consistent; however, any possible direct association is not dose and duration related, and might depend on a residual confounding effect of smoking. A few studies suggest an increased risk of childhood leukemia after maternal coffee drinking during pregnancy, but data are limited and inconsistent. Although the results of studies are mixed, the overall evidence suggests no association of coffee intake with cancers of the stomach, pancreas, lung, breast, ovary, and prostate overall. Data are limited, with RR close to unity for other neoplasms, including those of the esophagus, small intestine, gallbladder and biliary tract, skin, kidney, brain, thyroid, as well as for soft tissue sarcoma and lymphohematopoietic cancer.

I don't drink coffee myself, but based on these data overall it seems not do any harm taking all risks together - although pregnant women may want to ask their doctor about the risk in that specific case.